Math 55 Discussion problems 14 Feb

1. Find the decimal expansion of the number with the n-digit base seven expansion $(111 \ldots 111)_{7}$ (with $n 1$'s). [Hint: Use the formula for the sum of the terms of a geometric progression.]
2. How many zeros are at the end of the binary expansion of $\left(100_{10}\right)$!?
3. Determine whether the integers in each of these sets are pairwise relatively prime.
(a) $21,34,55$
(c) $25,41,49,64$
(b) $14,17,85$
(d) $17,18,19,23$
4. Use the Euclidean algorithm to find
(a) $\operatorname{gcd}(1,5)$
(d) $\operatorname{gcd}(1529,14039)$
(b) $\operatorname{gcd}(100,101)$
(e) $\operatorname{gcd}(1529,14038)$
(c) $\operatorname{gcd}(123,277)$
(f) $\operatorname{gcd}(11111,111111)$
5. Prove that for every positive integer n, there are n consecutive composite integers. [Hint: Consider the n consecutive integers starting with $(n+1)!+2$.]
6. Show that if a and b are both positive integers, then $\left(2^{a}-1\right) \bmod \left(2^{b}-1\right)=2^{a \bmod b}-1$.
7. Use the question above to show that if a and b are positive integers, then $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)$ $=2^{\operatorname{gcd}(a, b)}-1$.
